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Abstract 

Interpenetrating polymer network (IPN) materials possess unique properties that 
can be exploited for multicomponent composite armor systems, including 
toughness and thermal stability. E-beam curing of composites and adhesives 
offers advantages, such as reduced cure shrinkages, over traditional autoclave 
processing by curing multiple resins through the thickness for thick-section 
composites in a single step. Because of the complexity and thickness of 
composite integral armor structures, e-beam curing is an attractive processing 
method for Future Combat System applications, and the development of these 
new resins permits this approach. This research seeks to discern the differences 
in viscoelastic behavior between traditional thermal and e-beam curing in IPN 
resins, as these viscoelastic characteristics may prove important for composite 
integral armor applications. 
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1. Introduction 

Polymer composites and adhesively bonded hybrid composite structures (e.g., 
composite-ceramic integral armor) are promising candidates for ultra- 
lightweight structural armor for Future Combat Systems (FCS). The 
development of composite resins for low-cost processing with improved 
properties wiLl speed insertion of lightweight materials into FCS platforms. The 
processing and performance shortfalls in suitable resins may be addressed 
through exploitation of new electron beam (e-beam) curable systems including 
recently developed interpenetrating polymer network (IPN) materials. IPNs are 
polymers that are formed from the independent polymerization of two or more 
distinct networks, which results in unique molecular and physical 
microstructures offering improved properties [l]. The IPN materials are 
demonstrated to possess unique properties that can be exploited for 
multicomponent composite armor systems, including toughness and thermal 
stability. E-beam curing of composites and adhesives offers advantages, such as 
reduced cure shrinkages, over traditional autoclave processing by curing 
multiple resins through the thickness of thick-section composites in a single step. 
Because of the complexity and thickness of composite integral armor structures, 
e-beam curing is an attractive processing method for FCS applications and the 
development of these new resins permit this approach. This research seeks to 
discern the differences in viscoelastic behavior between traditional thermal and 
e-beam curing in IF’N resins, as these viscoelastic characteristics may prove 
important for composite integral armor applications. 

2. Materials 

Dalal and Palmese previously developed the IPN formulation and cure routes 
[Z]. The IPN formulation consisted of an epoxy network-diglycidyl ether of 
bisphenol F (DGEBF) (EEW = 170 g/mol) cured with bis(p-aminocyclohexyl) 
methane (EEW = 52.5 g/mol) - coupled to a free radical methacrylate network 
(lb-hexanediol dimethacrylate [HDDMA]). The HDDMA free radical 
crosslinking reaction mechanism was initiated either via e-beam or thermal using 
the organic peroxide initiator 2,5-dimethyl-2,5-di-(t-butylperoxy) hexane. To 
couple the epoxy and methacryl networks together, a partial esterification 
reaction was used to convert an epoxy functionality of triphenylohnethane 
triglycidyl ether (TMTE) (EEW = 162 g/mol) to a methacryl functionality 
following the procedure outlined previously [2]. This 33% methacrylated TMTE, 
along with the other constituents, is illustrated in Figure 1. 
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33% methacryiated triphenytolmethane triglycidyt ether (33% TOTE) 

Figure 1. IPN resin constituents. 

3. Experimental 

To study the influence of coupling between the DGEBF and HDDMA networks 
by the 33% TMTE the molar ratio of DGEBF to 33% TMTE was systematically 
varied from 4 mols of DGEBF to 0 mols of 33% TMTE (4-O samples) through 
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0 mols of DGEBF to 4 mols of 33% TMTE (O-4 samples). Intermediate molar 
ratios of DGEBF:33% TMTE (3:1,2:2, and 1:3) were also examined. The PACM 
concentration was always maintained at stoichiometry with respect to the 
DGEBF and 33% TMTE epoxy resins. The weight fraction of DGEBF and TMTE 
to HDDMA was maintained at a constant ratio of 0.70 to 0.30. 

Two routes of curing the IPNs were pursued. The thermal cure conditions 
consisted of an initial cure at 70 “C for 3 hr, followed by cure at 140 “C for 2 hr, 
and a final post-cure at 250 “C for 1 hr. The two-stage curing schedule was 
selected to strictly control the formation of the epoxy-amine ternplated network. 
Previous research has shown that the Michael’s addition side-reaction between 
the methacrylates and the PACM is minimal at 70 “C [2]. Therefore, the epoxy- 
amine stoichiometry is maintained. The e-beam cure route consisted of initial 
cure at 70 “C for 3 hr, followed by e-beam cure at a radiation dose of 20 Mrad, 
and a final post-cure at 250 “C for 1 hr. 

Dynamic mechanical analysis (DMA) was performed using a TA Instruments 
2980 DMA in the dual cantilever-bending mode. The samples were tested using 
a 20-mm frame and oscillatory displacement amplitude of 7.5 p. The 
displacement amplitude was verified to ensure linear viscoelastic response by 
deriving corresponding stress-strain curves. The typical sample’s width and 
thickness were approximately 12 mm x 2 mm, respectively. Constant heating 
rate experiments were carried out at 2.0 OC/min, with a frequency of 1 Hz from 
50” to 275 “C. Master curves were constructed from data obtained from multiple 
frequency sweeps, which were measured over three decades of frequency, 
ranging from 0.1 to 30 Hz in 3 “C isothermal steps. The glass transition 
temperatures were taken as the peak maximum of the loss modulus (E”) curves 
measured at 1 Hz. All samples were heated twice in the DMA. After the first 
heat, the samples were allowed to slow cool in the DMA to provide matching 
thermal histories. All DMA results in this report were taken from second heat 
measurements. 

4. Results and Discussion 

Figures 2-7 illustrate the dynamic mechanical response of the thermal and 
e-beam-cured samples at constant frequency (1 Hz) as a function of temperature. 
The overall trends in the dynamic mechanical properties are similar between the 
thermal and e-beam curing routes. In both cases, as the molar ratio of 33% TMTE 
to DGEBF is increased, the Tg is elevated and the glass to rubber transition zone 
is broadened. The trifunctional TMTE increases the crosslink density (pc) of the 
cured IPN. An increase in the width of the distribution of segmental relaxation 
times is consistent with an increased oc in highly crosslinked epoxy networks [3]. 
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Figure 2. Storage modulus plots for thermal-cured IPNs. 
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Figure 3. Storage modulus plots for e-beam-cured PNs. 
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Figure 4. Loss modulus plots for thermal-cured Il?Ns. 

300 , 

250- 

200- 

;;; 150- 

% 

Ll 
ioo- 

50- 

o- 

--0-4 

-1-Z 

-2-2 

-3-I 

-4-a 

i ,  . ,  . ,  . ,  . ,  ,  ,  ,  ,  ’ ,  ’ ,  ’ ,  ,  ,  ,  ,  ,  ,  

40 60 80 100 120 140 160 180 200 220 240 260 280 

Temperature (“C) 

Figure 5. Loss modulus plots for e-beam-cured Il?Ns. 
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Figure 6. Loss tangent plots for thermal-cured IPNs. 
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The 33% TMTE also covalently couples the epoxy-amine and free radical 
methacryl networks together, which increases the heterogeneity of molecular 
environments. This increase in T, and breadth of the glass to rubber transition 
with increased coupling between the individual components of an IPN has been 
observed in other systems [4-7’j. Akay and Rollins [4] determined that the 
broadening of the glass transition cannot be explained by a simple increase in 
crosslink density alone, and the coupling between the networks results in more 
complicated viscoelastic interactions. An apparent increase in crosslink density 
can be noticed in the rubbery regions of the storage modulus plots presented in 
Figures 2 and 3. 

While the overall trends in the dynamic mechanical properties between the 
thermal- and e-beam-cured samples are similar, sufficient differences are present 
that merit further investigation. The e-beam-cured samples exhibit a steady rise 
in Ts from 122” to 190 “C, as seen in the E” and tan 6 plots, as the molar ratio of 
the TIUTE coupler is extended through the 4-O to O-4 samples, respectively. The 
Ts for the 4-O (no coupler) thermal-cured samples is nearly identical to the 
e-beam counterpart at 123 “C, but the Ts values for the thermal route plateau at 
145 “C beginning with the 2-2 sample. Fourier transform infrared (FTIR) results 
(not shown) indicate that the e-beam cure method achieves a greater degree of 
methacryl conversion than the thermal route, which results in the increased 
crosslink density and Ts for the e-beam-cured samples [2]. The depressed 
thermal conversion of methacryl functional groups is presumably due to the free 
radical propagation becoming restricted because of diminished molecular 
mobility as the thermal cure is advanced. It is interesting to note that the 
ultimate Ts reached during thermal cure of 145 “C closely matches the median 
thermal cure step of 140 “C. The thermal post-cure step at 250 “C increases the 
degree of methacryl conversion from 75-79% to 84-89%, but does not yield a 
further increase Ts. The e-beam-cured samples have a higher degree of 
methacryl conversion prior to post-curin g (91-94%) and the additional post-cure 
step only increases the methacryl conversion by 2-4%. 

The differences in glassy behavior between the thermal- and e-beam-cured IPNs 
are readily apparent as seen in Figures 2 and 3, respectively. The glassy storage 
moduli of the thermal-cured IPN vary greatly and rise from 1 GPa for the 4-O 
sample to 2.5 GPa for the O-4 sample. The glassy storage modulus of the e-beam- 
cured samples lies near 2.5 GPa for all of the samples regardless of the DGEBF to 
TMTE molar ratio. These results were also reproduced using another DMA [2], 
which adds weight to the argument that the differences in glassy response 
between the curing routes are real, and not instrument artifacts. Mobility in the 
glassy state is related to sub-T, local secondary relaxation mechanisms such as 
the B transition [8]. The secondary B transition in epoxies based upon common 
diglycidylether of bisphenol A (DGEBA) is centered near -60 “C and is caused by 
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motion of the hydroxypropylether linkage and phenol ring flips [9]. The 
amplitude of the damping peak caused by the B transition has been found to be 
inversely proportional to the crosslink density at ambient temperatures in 
traditional microstructure networks, which results in a decreased glassy 
modulus [lo-131. A possible explanation proposed for this effect is that a 
crosslink point isolates short segments of network chain, therefore uncoupling 
local motion from other neighboring chain segments [ll]. It has also been 
postulated that decreasing the cross-link density will decrease the glassy 
modulus due to weaker Van der Waals interactions [14]. The results obtained for 
this research point towards the uncommon trend in that the thermal-cured IPNs 
with the lowest pc (4-O sample with 34% methacryl conversion) have the lowest 
magnitudes of glassy modulus. The e-beam-cured IPNs ail have similar 
methacryl conversions of 95-97% and similar glassy moduli. The thermal- and 
e-beam-cured IPNs have identical thermal histories after the post-cure step, so it 
is difficult to gauge the cause of the modulus differences (free volume, degree of 
conversion, IPN microstructure, etc.) without performing a detailed analysis of 
the p transition. On the basis of differences in glassy modulus between the 
e-beam and thermal-cured IPNs, one could also expect interesting differences in 
the sub-Ts nonequilibrium behavior [15]. This could lead to variations in the 
physical-aging rates between the e-beam and thermal-cured IPNs. 

In addition to the differences in glassy modulus between the thermal- and 
e-beam-cured samples, significant changes in the tan 6 peak in the glass 
transition region are also apparent. Figures 6 and 7 illustrate the tan 6 plots as a 
function of DGEBF to TMTE molar ratio for the thermal- and e-beam-cured 
samples, respectively. The e-beam-cured sample displays a continuous shift in 
T, towards higher temperatures with a corresponding broadening of peak width 
as the amount of TMTE is increased. The tan 6 curves for the e-beam samples are 
also relatively symmetric and are absent of any shoulders. As mentioned 
previously, the Ts of the thermal-cured O-4, l-3, and 2-2 samples plateau near 
145 “C due to diffusion considerations. Shoulders in the tan 6 signals of the 
thermal-cured l-3 and O-4 samples also appear that are not evident in the 
corresponding e-beam samples. The observation of a shoulder or second peak in 
the DMA spectra of an IPN is caused by multiple molecular relaxation 
mechanisms of multiple phase domains [5,16]. 

However, it is difficult to ascertain the molecular origin of the relaxation 
mechanism responsible for the tan 6 shoulders present in the thermal-cured l-3 
and O-4 samples from the simple isochronal DMA measurements performed for 
Figure 6. An alternative approach to enhance the shoulder region of the tan 6 
peaks is to sweep the frequency v) of the DMA measurement at isothermal 
temperatures. This method has. been used successfully to separate the 
overlapping B-transition of an epoxy matrix from the low temperature 
cL-transition of an included rubber toughener [17]. The peak-shoulder separation 
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achieved during this type of frequency sweep is improved for overlapping 
molecular processes that differ greatly in Arrhenius activation energy (EJ, as 
described by equation (1): 

where 

T = the temperature (in degrees Kelvin) of the peak maximum, and 
To = the reference temperature. 

Figures 8 and 9 show the isothermal frequency sweep E” and tan 6 plots for the 
e-beam-cured 1-3 sample, respectively. Again the e-beam-cured l-3 sample 
displays a single homogeneous transition with no shoulders. The E” peaks range 
in temperature from approximately 170” to 190 “C as the frequency of the 
measurement is swept from 0.1 to 30 Hz, respectively. The corresponding tan 6 
signal peaks are roughly 20 “C greater than the loss modulus peaks. 
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Figure 8. Loss modulus frequency sweep measurements of e-beam-cured 1-3 sample. 
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Figure 9. Loss tangent frequency sweep measurements of e-beam-cured 1-3 sample. 

In contrast to the e-beam-cured 1-3 sample, E” shoulders are still evident in the 
multiple frequency-sweep plots of the thermal-cured 1-3 sample (Figure 10) at 
high temperatures trailing the peak maxims (-190”-210 “C), but are not shifted 
from the main loss modulus peaks at any measured frequency. Therefore, the 
molecular mechanism responsible for the loss modulus shoulder in the thermal 
case must have an Arrhenius activation energy nearly identical to the primarily 
observed transition. Furthermore, when the loss modulus curves of Figure 10 
and the tan 6 curves of Figure 11 are directly compared, an interesting 
observation is noted. The prnnary transition present in the E” curves (-135”-155 “C) 
correlate to the leading shoulders in the respective tan 6 curves. The trailing 
shoulders in the E” curves (-190”-210 “C) link to the primary peaks in the tan 6 
curves. The difference in temperature between analogous E” and tan 6 peaks for 
the thermal-cured l-3 samples is nearly 40 “C. This raises more suspicion that 
the observed relaxations near 140”-145 “C for the higher crosslink density 
thermal samples are due to memory retention of the median oven-cure stage. 

Cure memory in the dynamic mechanical glass transition has been observed in 
polyamidoamine-epoxy networks by other researchers [18]. Sanz et al. [19] also 
observed shoulders in the tan 6 signals of stoichiometric epoxy-amine systems 
with temperatures and magnitudes dependent upon the thermal-cure conditions. 
This is a result of a fraction of the network structure attaining a high-crosslink 
density during gelation at the median-cure stage. During the post-cure stage, 
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further crosslinking reactions occur, but are diffusion limited within these 
regions of high-crosslink density from the previous cure stage. The physical 
heterogeneity between these regions of low- and high-crosslink density results in 
the broadness observed in the E” curves during DMA experiments. The 
broadness in the E” curves for the thermal-cured IPNs appears to be caused by 
physical mechanisms. In the case of the thermal-cured 1-3 samples, the E, 
calculated from the primary loss modulus peaks (135”-155 “C range) is 477 kJ/mol 
and 456 kJ/mol from the tan 6 peaks (175”-195 “C range). These values are very 
close to E, values of 498 kJ/mol and 509 kJ/mol calculated for the e-beam l-3 E” 
and tan 6 signals, respectively. 

A goal of this research was to investigate the possibility of using DMA to 
correlate the observed densities and cure shrinkage of the IPN adhesives to free 
volume. Gerard et al. [20] have used this approach to relate the crosslink density 
and chain flexibility of model epoxy-amine networks to free volume. Akay and 
Rollins [4] also examined the free-volume and glass-transition broadening of 
polyurethane/poly (methyl methacrylate) IPNs from viscoelastic standpoint. For 
this research, the viscoelastic interpretations were derived from a similar 
perspective using master curves of the loss modulus, which were constructed in 
the frequency (0) domain in the glass transition region (Ts + 30 “C) following the 
time-temperature superposition principle (tTsp) [3]. Prior to shifting the 
modulus isotherms horizontally along the frequency axis, a vertical shift factor 
correction of T,/T was applied, where To represents the reference temperature. 
The horizontal shift factors (aT > Tg) were then fitted to the empirical and free 
volume derived Williams-Landel/Ferry (WLF) equation (2). The WLF equation 
is used to describe the temperature dependence of the distribution of relaxation 
times (2) in viscoelastic materials. The Ci and C2 constants of the WLF equation 
were determined using a nonlinear least squares fit. The fractional free volume 
at the glass transition (fs) and coefficient of thermal expansion of the fractional 
free volume (o1f) were then solved using the Cl and C2 constants and setting 
empirical Doolittle constant (B) equal to 1[20,21]. The Cl and C2 constants of the 
WLF equation can also be used to solve for E,. The breadth of the distribution of 
relaxation times was quantified by fitting the master curves to the Kohlrausch- 
Williams/Watts (KWW) equation (5) and determining the coupling parameters 
69 PI- 7x62 P P ammeters were found using the methodology outlined by Weiss 
et al. [23,24]. 
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Figures 12 and 13 show the E” master curves and KWW fits for the thermal and 
e-beam-cured samples, respectively. For each sample, the isotherms successfully 
shifted to form smooth and continuous master curves. The KWW equation also 
provided reasonable descriptions of the master curves, with the p parameters 
summarized in Table 1. For each cure route, it can be seen that the breadth of the 
E” master curves with increased Th4TE concentration. This increase in coupling 
between networks and subsequent increase in crosshnk density is reflected as a 
decrease in the p parameters (0.237 for the e-beam 4-O sample to 0.113 for the 
e-beam O-4 sample and 0.202 for the thermal 4-O sample to 0.113 to the O-4 
thermal sample). The reference relaxation time used for the KWW fits is also 
provided. 

25 

-6 -4 -2 0 2 4 6 6 

log coaT 

Figure 12. Loss modulus E” master curves and KWW fits for thermal-cured samples. 
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Figure 13. E” master curves and KWW fits for e-beam-cured samples. 

However, for tTsp to be gauged a success, the shift factor plots and WLF 
parameters must also be considered. Table 1 also summarizes TP E, CI, Cs fs, 
and of. Figures 14 and 15 show the shift factor plots for the thermal and e-beam- 
cured samples, respectively. The values calculated for the thermal-cured O-4, 
1-3, and 2-2 samples must certainly be incorrect as multiple relaxation processes 
were clearly observed in the E” and tan 6 signals [3]. This can also be seen in the 
shift factor plots (Figure 14), as the curves for these samples were nearly linear 
and deviated from WLF behavior. The thermal-cured 2-2 sample fits the WLF 
equation so poorly that none of the parameters could be reasonably determined 
or approximated. The WLF parameters obtained for the thermal-cured samples 
with little inter-network coupling, 4-O and 3-1, seemed reasonable. 

The most interesting viscoelastic behavior is observed in the e-beam-cured PN 
where no directly observable multiple relaxation peaks or shoulders were found 
in the E” and tan 6 signals. The shift factor plots for the e-beam-curing process 
(Figure 15) are similar to the thermal-cured counterparts in that as the molar ratio 
of TMTE coupler to DGEBF is increased, the temperature sensitivity of log ar 
decreases. This result is consistent with the results of Ogata et al. [25], where a 
decrease in the temperature and frequency dependency of the glass to rubber 
relaxation for phenol-formaldehyde novolac epoxy networks was found as the 
crosslink density was increased. Significant departures from typical epoxy-amine 
network properties are found in the values of f, and cxf calculated for the e-beam- 
cured IPNs. The uncoupled 4-O sample has values of fs and af that are in the range 
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Table 1. Viscoelastic parameters derived from fits of master curves. 

Sample p x101 rx102 T, E&2 
(“c) @J/mol) @J~~ol) 

Cl 

(2) 
fgx1W cqx104 

(s) (“c -1) 

0.38 190 

0.48 181 

0.75 158 

1.4 134 
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E-beam 

472.2 484.4 

497.0 623.6 

627.5 642.3 

597.7 no.2 
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Figure 14. Shift factor plots for thermal-cured IPNs. 
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Figure 15. Shift factor plots for e-beam-cured IPNs. 

of values for conventional thermosets, as determined by Gerard et al. [20]. As 
the molar ratio of TMTE to DGEBF is increased, the calculated values offs and of 
decrease significantly. The most coupled sample (O-4) has an af value in the 
rubbery region, which is an order of magnitude lower than the typical values 
reported by Gerard. This inter-network coupling profoundly increases the 
overall crosslink density of the IPN. One must also keep in mind that the 
viscoelastic response of the highly coupled e-beam IPN samples also deviates 
considerably from ideal WLF behavior, so the assumption of a single relaxation 
mechanism may not be valid. While it is uncertain whether or not multiple 
relaxation mechanisms from a heterogeneously crosslinked network structure 
are active in the case of the e-beam-cured IPNs, the trends in the viscoelastic data 
point towards a more homogeneously crosslinked network in comparison to the 
thermal-cure counterpart. 
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List of Acronyms and Abbreviations 

aT 

B 

B parameter 

j3 transition 

“C 

Cl 

c2 

DGEBA 

DGEBF 

DMA 

E 

E” 

E, 

e-beam 

EEW 

f!z 
FTIR 

GPa 

HDDMA 

IPN 

mm 

MPa 

PACM 

T 

Tg 
TO 

tan6 

WLF isothermal shift factor 

Doolittle equation parameter 

KWW equation fitting parameter 

localized glassy polymeric sub-T, relaxation 

degrees Celcius 

WLF fitting parameter 

WLF fitting parameter 

diglycidyl ether of bisphenol A 

diglycidyl ether of bisphenol F epoxy resin 

dynamic mechanical analysis 

dynamic storage modulus 

dynamic loss modulus 

Arrhenius activation energy 

electron beam 

epoxy equivalent weight 

fractional free volume at T = Tg 

Fourier transform infrared spectroscopy 

giga Pascals 

1,6-hexanediol dimethacrylate 

interpenetrating polymer network 

Kohlrausch-William/ Watts equation 

millimeters 

mega Pascals 

bis (p-aminocyclohexyl) methane 

temperature 

glass transition temperature 

WLF equation reference temperature 

E”/E 
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tTsp 

TMTE 

WLF 

4-O 

3-1 

2-2 

l-3 

O-4 

af 

0 

PC 

T 

time-temperature superposition principle 

triphenylolmethane triglycidyl ether 

Williams-Landel/Ferry equation 

4 mols of DGEBF epoxy to 0 mols of 33% TMTE 

3 mols of DGEBF epoxy to 1 mols of 33% TMTE 

2 mols of DGEBF epoxy to 2 mols of 33% TMTE 

1 mols of DGEBF epoxy to 3 mols of 33% TMTE 

0 mols of DGEBF epoxy to 4 mols of 33% TMTE 

coefficient of thermal expansion of the fractional free volume 

micrometers 

angular frequency 

crosslink density 

relaxation time constant of KWW equation 
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